

Wordnet-oriented recognition of derivational relations

WIKTOR WALENTYNOWICZ, MACIEJ PIASECKI

WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

Presentation plan

Introduction to the problem of derivation

Describe of derivation data from plWN

Our motivation

Representation of lexical units for classification

Classification tasks (and problems of it)

Conclusions, limitations and future work

dom	domek
a house	a little house
lut	lutować
a solder	solder
(noun)	(verb)
kolarz	kolarka
a cyclist	———————————————————————————————————

Derivational relations in Polish

Our dataset

Motivation

Support for linguistic research

Semi-automated verification of resources quality

Semi-automated extension of resources

Help in paraphrase task

Identifing meanings of unknown words

Different ways of representing a lexical unit

Bag of Characters vector

For each occurrence of a character in a word, the value of the vector at the index corresponding to that letter is increased by one.

In the case of Polish, the length of the vector is 35 -- 32 characters from the Polish alphabet plus the characters Q, V, X preserved for words borrowed from other languages.

We know exactly what a feature represents.

https://www.petplace.com/article/cats/pet-care/small-or-little-cats-name-ideas-for-small-or-little-cats/

Word form: kotek (little cat)

а	 е	 k	I	т	n	0	 t	 z
0	 1	 2	0	0	0	1	 1	 0

We know exactly what the features in the vector represent.

fastText vector

Vectors for a given word are created based on a learner model unsupervised on a large corpus.

The size of the vector depends on the parameters of the model with which it is generated.

Word form: kotek (*little cat*)

0	1	2	 119	120	121	122	123	 297	298	299
-0.161	-0.459	0.106	 0.037	-0.114	0.030	0.121	0.397	 -0.202	0.067	0.041

We do not know what specific feature values represent...

...but we know that the differences in the vectors should represent some relationship between the words.

Word form: kotek (*little cat*)

0	1	2	 119	120	121	122	123	 297	298	299
-0.16	1 -0.459	0.106	 0.037	-0.114	0.030	0.121	0.397	 -0.202	0.067	0.041

$$V_{kotek}^{W} = \frac{\sum \{V_{kot}, V_{ote}, V_{tek}, V_{kote}, \dots, V_{kotek}\}}{N}$$

N is the number of known n-grams for the vectorised word.

The orthographic form of a word affects the fastText vector, more so than is the case in Word2Vec vectors.

fastText vector

Different ways of representing learning examples

Different ways of representing learning examples

DIFFERENTIAL VECTOR

3-WAY VECTOR

Derivation form vector

Base form vector

= Differential vector

It only represents the difference between the derivational form and the base form.

Includes a full representation of the lexical units involved in the relation.

Vector combinations

Only BoC vectors

Only fastText vectors

Combined fastText for words

BoC for differentia vector

Classification of relations

Type of classificators

Decision Tree

Random Forest

Multilayer Perctepron

Type of classificators

Representations based on the BoC, were tested on all three types of classifiers, fastText-based representations only on MLP.

Experiments setup

We used the implementation of classifiers from the scikit-learn package

The dataset was divided into 5 lexically separable parts (with respect to the base form)

The MLP network after the input layer had a linear layer of size 100

All classifiers, were multi-class classifiers

Problems from the point of view of the classification task

The dataset is highly unbalanced. The smallest class contains 300 examples, while the most numerous class contains over 13,000.

We decided on a multi-class classifier because it is difficult to generate negative examples in teaching a binary classifier.

Experiments results

	BoC Diff DT	BoC Diff RF	BoC Diff MLP	BoC 3-way DT	BoC 3-way RF	BoC 3-way MLP
F-1 Score	0,826	0,828	0,826	0,794	0,818	0,822
St. Dev.	0,005	0,004	0,005	0,005	0,004	0,004
	FT Diff 100	FT 3-way 100	FT Diff 300	FT 3-way 300	COMB 100	COMB 300
F-1 Score	0,816	0,830	0,828	0,842	0,830	0,842
St. Dev.	0,005	0,000	0,004	0,004	0,000	0,004

BoC – bag of characters, FT – fastText, COMB – combined vectors from BoC & FT Diff – differentia vector representation, 3-way – 3-way (concatanation) vector representation DT – decision tree, RF – random forest, MLP – multilayer perceptron

Conclusions & limitations

Classifiers using embedding vectors from fastText perform better, but this is a difference of about 1.5 percentage points.

The BoC representation is much more informative for humans and allows comparison of classifier behaviour with linguistic rules.

The similar results of the simple and sophisticated vectorisation of the examples, may point to a problem with the learning data for the task as a currently limiting factor in further progress.

Future work

We want to extend our research to other languages for which information on derivational relations is available.

We want to attempt to prepare derivational examples in the corpus so that we can transfer this task to the contextual space.

Thanks for your attention! Contact by e-mail: wiktor.walentynowicz@pwr.edu.pl