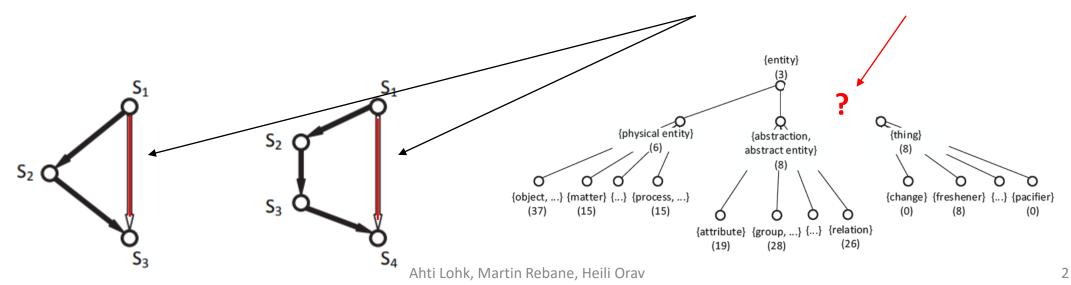
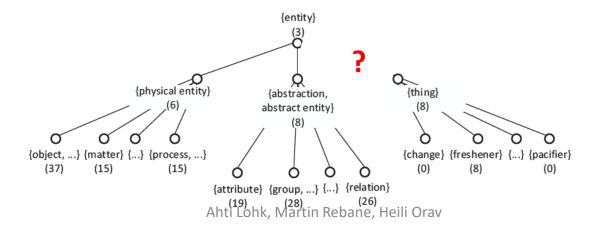


An Experiment: Finding Parents for Parentless Synsets by Means of CILI


Ahti Lohk¹, Martin Rebane² and Heili Orav³

¹Department of Software Science, **Tallinn University of Technology**, Tallinn, Estonia ²School of Engineering, **University of Warwick**, Coventry, United Kingdom ³ Department of Computer Science, **University of Tartu**, Tartu, Estonia

Background


- One of the main goals of wordnet development is to **make it accessible** while **en**: **correctness**.
- Errors that require correction can be classified into **three categories**:
 - Formal related to the source file structure or data presentation in it
 - Semantical related to the wordnet semantics
 - **Structural** related to the wordnet as a graph: **redundant** and **missing links**

Problem

- We focus only on **missing link problem**: specifically **parentless synsets**.
- That means that link is missing between the synset and its parent.
- On the one hand, the lexicographer may not know which synset does not have a parent and
- on the other hand, which synset should be the parent for the parentless synset.

Classification of parentless synsets

Parentless synset can be:

- **1. Root synsets** (or unique beginners or top concepts) {entity: n}, {do: v, execute: v, perform:v}, {exist: v, be: v} in OEWN (v 2.0)
- 2. Noun synsets with name content {Washington: n, Washington DC: n, ...} OEWN (v 2.0)
- **3.** Other parentless synsets (with and without subordinates) {separate: v, divide: v}, {globe: n, earth: n, ...} OEWN (v 2.0)

NB! We look only cases where the **synset does not have any parent**: **No multiple inheritance cases**!

Wordnets and their parentless synsets

	Wordnet (lenguage)	Parentless synsets		
	Wordnet (language)	noun	verb	
From their webpages	OEWN (English)	8	574	
	EstWN (Estonian)	190	13	
	Odenet (German)	3433	2583	
From Open Multilingual Wordnet webpage	ODWN (Dutch)	0*	87	
	FinWN (Finnish)	172	559	
	LSG (Irish)	6000	1468	
	OWN-PT (Portuguese)	18577	7143	
	NTU-JPN (Japanese)	5766	420	

*odwn-02532028-n | {haring}) -> odwn- odwn-00001740-n | {wezen, wezenlijkheid, iets, ...} oewn-02534659-n | {herring, Clupeaharangus} -> oewn-00001740-n | {entity}

Purpose

Our purpose was to find automatically **possible parents** for **parentless synsets** in **IS-A hierarchies** of a target wordnet by means of source wordnets. Both target and source wordnets are in **XML-format** and equipped with Collaborative Interlingual Index (CILI).

What % of parentless synsets are equipped with CILI?

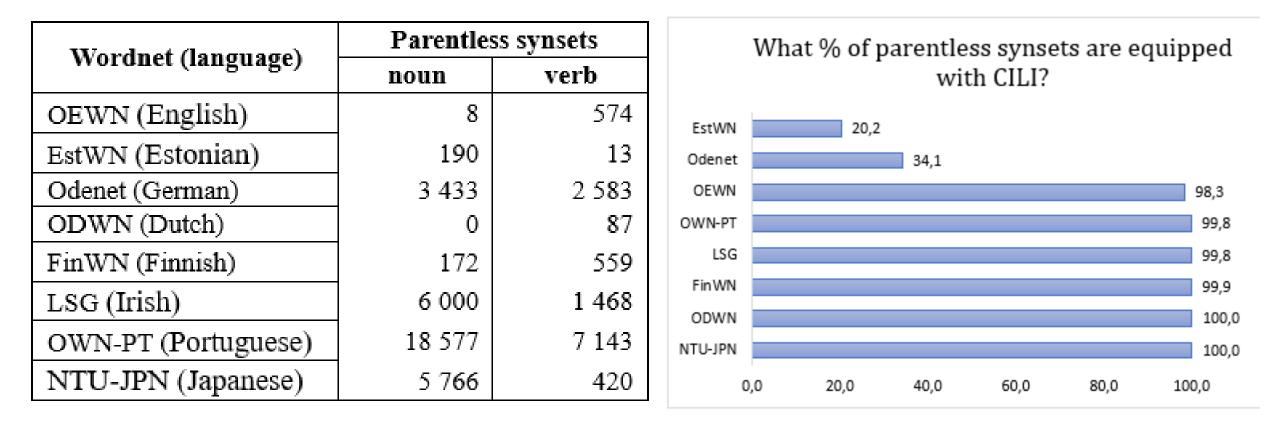


Table 1: Number of parentless synsets in wordnets.

Simplified algorithm

for *synset* **in** *target_wn.parentless_synsets*: *#verb and noun synsets*

If not synset.content_is_name:

for wordnet in source_wordnets:

if target_wn is not wordnet:

parents = find_parents_via_CILI_from_other_wordnets(synset, wordnet)
grandparents = find_parents_via_CILI_from_other_wordnets(synset, wordnet)

Results presentation format

26

WITHOUT PARENT

i21979 estwn-et-19703-v|['puuderdama'] (OEWN equivalent: oewn-00041904-v|['powder'])

POSSIBLE PARENT(S):

i21972 estwn-et-5410-v|['maalima', 'meikima', 'minkima', '...']

PARENTS FROM OTHER WORDNET(S):

(i21979) ->i21972 cow-00040928-v oewn-00040659-v|['makeup'] (i21979) ->i21972 enwn-ens-367184 oewn-00040659-v|['makeup'] (i21979) ->i21972 ewn-00040659-v oewn-00040659-v|['makeup'] (i21979) ->i21972 fiwn-00040928-v oewn-00040659-v|['makeup'] (i21979) ->i21972 lsg-00040928-v oewn-00040659-v|['makeup'] (i21979) ->i21972 oewn-00040659-v oewn-00040659-v|['makeup']

POSSIBLE GRANDPARENT(S):

i30124 estwn-et-70-v|['dekoorima', 'dekoreerima', 'ehtima', '...'] i21970 estwn-et-173-v|['kohendama', 'kordaseadma', 'korrastama']

GRANDPARENTS FROM OTHER WORDNET(S):

(i21972) ->i21970 cow-00040353-v oewn-00040084-v|['neaten', 'groom'] (i21972) ->i21970 enwn-ens-367182 oewn-00040084-v|['neaten', 'groom'] (i21972) ->i30124 estwn-et-70-v oewn-01679858-v|['decorate','adorn', '...'] (i21972) ->i21970 ewn-00040084-v oewn-00040084-v|['neaten', 'groom'] (i21972) ->i21970 fiwn-00040353-v oewn-00040084-v|['neaten', 'groom'] (i21972) ->i21970 odwn-00040353-v oewn-00040084-v|['neaten', 'groom'] (i21972) ->i21970 oewn-00040084-v oewn-00040084-v|['neaten', 'groom'] (i21972) ->i21970 oewn-00040084-v oewn-00040084-v|['neaten', 'groom'] (i21972) ->i21970 slownet-eng-30-00040353-v oewn-00040084-v|['neaten', 'groom'] Ahti Lohk, Martin Rebane, Heili Orav

Results

Wordnet (Language)	What % of parentless synsets are CILI- equipped	Nr of parentless synsets	Found parents	Found grand- parents	No parent, no grand- parent	% of no possible parent & grandpar ent
EstWN (Estonian)	20,2%	41	36	36	5	12,2%
Odenet (German)	34,1%	2 052	1 178	1 140	874	42,6%
OEWN (English)	98,3%	572	268	250	300	52,4%
OWN-PT (Portuguese)	99,8%	25 660	25 457	25 020	194	0,76%
LSG (Irish)	99,8%	7 454	7 337	7 258	114	1,53%
FinWN (Finnish)	99,9%	730	410	390	319	43,7%
ODWN (Dutch)	100,0%	87	38	31	49	56,30%
NTU-JPN (Japanese)	100,0%	5 950	5 211	5 192	739	12,4%

Case Study of Estonian Wordnet

- 41 parentless and CILI-equipped synsets (20,2% of parentless synsets)
 35 noun + 6 verb synsets
- After a closer examination, we found that the decisions that had to be made in solving them fell into four categories:
 - 1. The **parentless synset turned out to be a root concept. 7** cases (3 nouns + 4 verbs).
 - 2. The suggested possible parent was suitable for the parentless synset. 10 cases.
 - 3. The suggested possible grandparent was suitable for the parentless synset. 4 cases.
 - 4. A parentless synset receives a parent that was not present in either the possible parents or grandparents. **20 cases**.

Case study of Estonian wordnet

EXAMPLE 1:

Parentless synset:

{'smugeldamine', '...'}({'smuggling'})

Suggested parent:

{'import', '...'} ({'importation', 'importing'})

Correct parent:

```
{transport, '...'} ({'transport', 'transfer', '...'})
```

Argument:

smuggling in Estonian does not mean only import but also export

EXAMPLE 4:

Parentless synset:

{'foneetika', '...'} ({' phonetics'})

Suggested parent:

{'akustika', 'heliõpetus'} ({'acoustics'})

Correct parent:

{lingvistika, '...'} ({'linguistics'})

Argument:

The authoritative dictionary of the Estonian language (Sõnaveeb: <u>https://sonaveeb.ee/</u>) declares that phonetics is a part of linguistics.

Final thoughts

We proposed an approach to **automatically detect** the **possible parent for** cili-equipped **parentless synsets** using source wordnets.

- 1. The proposed **approach is universal**. That is, it can be applied to wordnets of all languages (with specific xml-format and cili-equipped synsets).
- 2. Such an approach will definitely help increase the quality of wordnets.
- 3. On the basis of the Estonian wordnet, we can say that the **correction requires the intervention of a lexicographer** and
- 4. that the **synsets** connected through CILI **in different languages may differ in their broader meaning**.
- **5.** In the future, the proposed approach could also be applied to synsets that have parents to detect possible inconsistencies.

Questions?