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Few-shot Information Extraction?

● Adoption of NLP in companies deterred  
because of high effort of domain experts
– In the case of Information Extraction, define non-trivial 

schemas with entities and relations of interest, 
annotate corpus, train supervised ML system

– Define, annotate, train

● Verbalize while defining, interactive workflow
– Domain expert defines entities and relations in English

– Runs the definitions on examples

– Annotates a handful of incorrect examples, iterates
6
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https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-entities-guidelines-v6.6.pdf
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-guidelines-v5.4.3.pdf

https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-relations-guidelines-v6.2.pdf

Named-entity 
Classification (NEC) 

PERSON: Each distinct person or 
set of people mentioned in a doc.

ORG: ... GPE: ... DATE: ...

NEC

https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-entities-guidelines-v6.6.pdf
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=0CAQQw7AJahcKEwj444v75PH4AhUAAAAAHQAAAAAQAg&url=https%3A%2F%2Fwww.ldc.upenn.edu%2Fsites%2Fwww.ldc.upenn.edu%2Ffiles%2Fenglish-events-guidelines-v5.4.3.pdf&psig=AOvVaw1UlASXmikdmhRxkGzAOxRS&ust=1657661369289439
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-relations-guidelines-v6.2.pdf
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EVENT

LIFE.DIE: A DIE Event occurs whenever 

the life of a PERSON Entity ends. 
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RELATIONEVENT

LIFE.DIE: A DIE Event occurs whenever 

the life of a PERSON Entity ends. 
EMPLOYEEOF: Employment captures the relationship 
between Persons and their employers. This Relation is 
only taggable when it can be reasonably assumed that 
the PER is paid by the ORG or GPE.

https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-entities-guidelines-v6.6.pdf
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-guidelines-v5.4.3.pdf

https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-relations-guidelines-v6.2.pdf
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Event 
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Relation 
Extraction (RE)
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RELATIONEVENT

DATE: ...

LIFE.DIE: A DIE Event occurs whenever 

the life of a PERSON Entity ends. 
EMPLOYEEOF: Employment captures the relationship 
between Persons and their employers. This Relation is 
only taggable when it can be reasonably assumed that 
the PER is paid by the ORG or GPE.

VICTIM-ARG: The person(s) who died

EVENT ARGUMENT

PLACE-ARG: Where the death takes place
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Relation 
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Event Argument 
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John Smith, an executive at XYZ Co., died in Florida on Sunday.
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PERSON: Each distinct person or 
set of people mentioned in a doc.

ORG: ... GPE: ... DATE: ...

NEC

John SmithPERSON, an executive at XYZ Co.ORGANIZATION, died in FloridaGPE on SundayDATE.
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EVENT

PERSON: Each distinct person or 
set of people mentioned in a doc.
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{X} is a person. → PERSON

{X} is a date.     → DATE

NEC VERBALIZATIONS
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EVENT VERBALIZATIONS

{X} is a person. → PERSON

{X} is a date.     → DATE

{E} refers to a death.    → LIFE.DIE 

NEC VERBALIZATIONS
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RELATION VERBALIZATIONSEVENT VERBALIZATIONS

{X} is a person. → PERSON

{X} is a date.     → DATE
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Few-shot Information Extraction?

Define, annotate, train

vs.

Interactive workflow: verbalize while defining

28

● 10 times more effective 
(time of domain experts)

● Friendlier for 
domain experts 

freepik.com/

insider.com/
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Few-shot Information Extraction?

Thanks to latest advances:
● Large pre-trained language models (LM)
● Recast IE into natural language

instructions and prompts 

But LMs have limited inference ability 
● Enhance inference abilities of LM 

with entailment datasets
● Recast IE as an entailment problem

29
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Plan for the talk

● Pre-trained Language Models
● Prompting
● Entailment
● Few-shot Information Extraction

32
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1) Self-supervised LM pre-training
– Unlabelled data: HUGE corpora: 

Wikipedia, news, web crawl, social media, etc.
– Train some variant of a Language Model

2) Supervised pre-training
– Very common in vision (ImageNet), standalone. 

NLP in-conjuction with self-supervised LM, 

– Task-specific: e.g. transfer from one Q&A dataset to another 
(REF)

– Entailment for improved inference (REF)

– All available tasks (e.g. T0) (REF)

34

Pre-trained Language Models
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1) Self-supervised LM pre-training
– Unlabelled data: HUGE corpora: 

Wikipedia, news, web crawl, social media, etc.
– Train some variant of a Language Model

2) Supervised pre-training
– Very common in vision (ImageNet), standalone. 

NLP in-conjuction with self-supervised LM. 

– Task-specific: e.g. transfer from one Q&A dataset to another 

– Entailment for improved inference 
(e.g. Sainz et al. 2021; Wang et al. 2021)

– All available tasks (e.g. T0, Sahn et al. 2021) 

35

Pre-trained Language Models
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Informally, learn parameters ϴ  using some variant of

 Pϴ(text | some other text) 

36

Self-supervised LM pre-training



Few-shot IE: pre-train, prompt, entail – Eneko Agirre

Informally, learn parameters ϴ  using some variant of

 Pϴ(text | some other text) 

37

Self-supervised LM pre-training

Pre-Trained Models: Past, Present and Future (Han et al. 2021)

(Causal) Language Model (GPT)         Masked Language Model (BERT)
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Self-supervised LM pre-training

Pre-Trained Models: Past, Present and Future (Han et al. 2021)

(Causal) Language Model (GPT)         Masked Language Model (BERT)

● Self-attention: left
● Loss: next word
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Self-supervised LM pre-training

● Self-attention: left
● Loss: next word
● At inference: generates 

text conditioned on prefix

                                    

OpenAI Playground DaVinci

[CLS]   The     sky        is      
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Self-supervised LM pre-training

OpenAI Playground DaVinci

● Self-attention: left
● Loss: next word
● At inference: generates 

text conditioned on prefix

                                    

[CLS]   The     sky        is    
  

blue = 20.60%
the = 10.94%
red = 6.15%
clear = 5.84%
falling = 4.87%
orange = 4.11%
...
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Self-supervised LM pre-training

● Self-attention: left
● Loss: next word
● At inference: generates 

text conditioned on prefix

                                 clear   

[CLS]   The     sky        is    
  

blue = 20.60%
the = 10.94%
red = 6.15%
clear = 5.84%
falling = 4.87%
orange = 4.11%
...

OpenAI Playground DaVinci
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Self-supervised LM pre-training

● Self-attention: left
● Loss: next word
● At inference: generates 

text conditioned on prefix

                                 clear    today  

[CLS]   The     sky        is      clear  
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Self-supervised LM pre-training

● Self-attention: left
● Loss: next word
● At inference: generates 

text conditioned on prefix

                                 clear    today  [SEP]

[CLS]   The     sky        is      clear   today
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Informally, learn parameters ϴ  using some variant of

 Pϴ(text | some other text) 
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Self-supervised LM pre-training

Pre-Trained Models: Past, Present and Future (Han et al. 2021)

(Causal) Language Model (GPT)         Masked Language Model (BERT)
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Self-supervised LM pre-training

Pre-Trained Models: Past, Present and Future (Han et al. 2021)

(Causal) Language Model (GPT)         Masked Language Model (BERT)● Self-attention: 
left and right

● Loss: 
masked words
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Self-supervised LM pre-training

Pre-Trained Models: Past, Present and Future (Han et al. 2021)

● Self-attention: 
left and right

● Loss: 
masked words

● At inference it can fill 
explicitly masked tokens

                                 clear    

[CLS]   The     sky        is      [MASK]    .       [SEP]   

blue = 20.60%
the = 10.94%
red = 6.15%
clear = 5.84%
falling = 4.87%
orange = 4.11%
...
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Fine-tuning on a specific task

Pre-Trained Models: Past, Present and Future (Han et al. 2021)

Sentence classification: 
Add a classification head 
on top of the [CLS] token

Sentiment

Analysis

Training example:

(The sky is fantastic,Positive)
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Fine-tuning on a specific task

Pre-Trained Models: Past, Present and Future (Han et al. 2021)

[CLS]   The     sky        is      fantastic   .      [SEP]  

Positive = 82%
Negative = 18%

Sentence classification: 
Add a classification head 
on top of the [CLS] token

Sentiment

Analysis

Training example:

(The sky is fantastic,Positive)
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NLP performance improvement

49

Clark et al. AI Magazine 41 (4) 2020
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Scaling up pretraining

50

Pre-Trained Models: Past, Present and Future (Han et al. 2021)
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Why do Pre-trained LMs
work so well?
● LM is a very difficult task, even for humans.

– LMs compress any possible context into a vector that 
generalizes over possible completions.

– Forced to learn syntax, semantics, encode facts about 
the world, etc.

● LM consume huge amounts of data
● The fine-tuning stage can exploit all 

knowledge in LM, instead of starting from 
scratch

51
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Plan for this session

● Pre-trained LM
● Prompting
● Entailment
● Few-shot Information Extraction

52
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What is prompt learning?

Encourage a pre-trained model 
to make particular predictions by providing 
a “prompt” specifying the task to be done

A new paradigm: Pre-train, prompt, predict

53

Source: Pre-train, Prompt, and Predict: A 
Systematic Survey of Prompting Methods in 
Natural Language Processing (Liu et al. 2022)
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What is prompt learning?

Rationale: 
Recast NLP tasks into natural language, 
so Pretrained Language Models can apply 
their knowledge about language and the world

Related ideas: zero-shot and few-shot:
”Learning a task with minimal task description”

– Instructions on what the task is
– Present task to LM as a prompt
– If few-shot: handful of labeled examples

54
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What is prompt learning?

Rationale: 
Recast NLP tasks into natural language, 
so Pretrained Language Models can apply 
their knowledge about language and the world

Related ideas, zero-shot and few-shot
Learn a task with minimal task description:

– Instructions on what the task is
– Present task to LM as a prompt
– If few-shot: prepend handful of labeled examples

55
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Sentiment analysis

57

The sky is fantastic . 
Positive 

Negative 
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Sentiment analysis
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[CLS]   The     sky        is      fantastic   .      [SEP]  

Positive = 82%
Negative = 18%

Fine-tuned 

LM
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LM prompting (zero-shot)

59

Frozen 

MLM LANGUAGE MODEL
The     sky        is      fantastic   .     It        was      [MASK]      !

Language Models are Few-Shot Learners (Brown et al. 2020)
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LM prompting (zero-shot)
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Frozen 

MLM LANGUAGE MODEL
The     sky        is      fantastic   .     It        was      [MASK]      !

P1=P(great    | The sky is fantastic. It was [MASK] !)
P2=P(terrible | The sky is fantastic. It was [MASK] !)

P1 > P2 then Positive Language Models are Few-Shot Learners (Brown et al. 2020)
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LM prompting (zero-shot)
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Frozen 

MLM LANGUAGE MODEL
The     sky        is      fantastic   .     It        was      [MASK]      !

great = 12%
terrible = 4%

P1=P(great    | The sky is fantastic. It was [MASK] !)
P2=P(terrible | The sky is fantastic. It was [MASK] !)

P1 > P2 then Positive Language Models are Few-Shot Learners (Brown et al. 2020)
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LM prompting (zero-shot)
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LANGUAGE MODEL
The     sky        is      fantastic   .     It        was      

Language Models are Few-Shot Learners (Brown et al. 2020)

Frozen 

LM



Few-shot IE: pre-train, prompt, entail – Eneko Agirre

LM prompting (zero-shot)
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LANGUAGE MODEL
The     sky        is      fantastic   .     It        was      

P1=P(great    | The sky is fantastic. It was )
P2=P(terrible | The sky is fantastic. It was )

P1 > P2 then Positive Language Models are Few-Shot Learners (Brown et al. 2020)

Frozen 

LM



Few-shot IE: pre-train, prompt, entail – Eneko Agirre

LM prompting (zero-shot)
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LANGUAGE MODEL
The     sky        is      fantastic   .     It        was      

great = 3%
terrible = 1%

P1=P(great    | The sky is fantastic. It was )
P2=P(terrible | The sky is fantastic. It was )

P1 > P2 then Positive Language Models are Few-Shot Learners (Brown et al. 2020)

Frozen 

LM
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LM prompting (few-shot)
In-context learning 

65

Text: I’m not sure I like it.
Label: Negative

Text: Thank you for the 
amazing help.
Label: Positive

LANGUAGE MODEL

Language Models are Few-Shot Learners (Brown et al. 2020)

S1 = I’m not sure I like it. It was terrible!
S2 = Thank you for the amazing help. It was great!
S = The sky is fantastic. It was ____

Training Data
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LM prompting (few-shot)
In-context learning 

66

Text: I’m not sure I like it.
Label: Negative

Text: Thank you for the 
amazing help.
Label: Positive

LANGUAGE MODEL

Language Models are Few-Shot Learners (Brown et al. 2020)

S1 = I’m not sure I like it. It was terrible!
S2 = Thank you for the amazing help. It was great!
S = The sky is fantastic. It was ____

Training Data

P1=P(great    | S1 \n S2 \n The sky is fantastic. It was )
P2=P(terrible | S1 \n S2 \n The sky is fantastic. It was )

P1 > P2 then Positive
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LM prompting (few-shot)
In-context learning 
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Text: I’m not sure I like it.
Label: Negative

Text: Thank you for the 
amazing help.
Label: Positive

LANGUAGE MODEL

Language Models are Few-Shot Learners (Brown et al. 2020)

S1 = I’m not sure I like it. It was terrible!
S2 = Thank you for the amazing help. It was great!
S = The sky is fantastic. It was ____

Training Data

P1=P(great    | S1 \n S2 \n The sky is fantastic. It was )
P2=P(terrible | S1 \n S2 \n The sky is fantastic. It was )

P1 > P2 then Positive
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(Brown et al. 2020)

LM prompting (few-shot)
In-context learning 
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Domain-experts provides
templates / label map

69

I’m not sure I like it. It was terrible!
Thank you for the amazing help. It was great!
The sky is fantastic. It was ____

Review: I’m not sure I like it. Sentiment: negative
Review: Thank you for the amazing help. Sentiment: positive
Review: The sky is fantastic. Sentiment:  ____

Template: [x] It was __ !            
Label map: great <=> positive

Template: Review: [x] Sentiment: __   
Label map: positive <=> positive
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Domain-experts provide 
templates / label map

70

I’m not sure I like it. It was terrible!
Thank you for the amazing help. It was great!
The sky is fantastic. It was ____!

Review: I’m not sure I like it. Sentiment: negative
Review: Thank you for the amazing help. Sentiment: positive
Review: The sky is fantastic. Sentiment:  ____

Template: [x] It was __ !            
Label map: great <=> positive

Template: Review: [x] Sentiment: __   
Label map: positive <=> positive
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Zero-shot and few-shot 
No parameter update

71

● Good results with the largest 
GPT-3 models (175B)

● Even if there is no parameter update
● Large variance depending on prompts

(templates and label map)
● Development of prompts should be on 

available examples only (Perez et al. 2021)
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Traditional fine-tuning 

Few-shot learning with prompts
and parameter updates

[CLS]   The     sky        is      fantastic   .      [SEP]  

Positive = 82%
Negative = 18%

Fine-tuned 

LM

Training example:
(The sky is fantastic,Positive)
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Traditional fine-tuning 

● Low results on few-shot setting

Few-shot learning with prompts
and parameter updates
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Fine-tune LM using prompted datasets

Usually smaller LM (PET)

Few-shot learning with prompts
and parameter updates

Exploiting Cloze Questions for Few Shot Text Classification and NLI (Schick and Schutze, 2020)

Training example:
(The sky is fantastic, Positive)

Prompted training example:
(The sky is fantastic. It was [MASK] !, great)
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Fine-tune LM using prompted datasets

Usually smaller LM (PET)

Few-shot learning with prompts
and parameter updates

Exploiting Cloze Questions for Few Shot Text Classification and NLI (Schick and Schutze, 2020)

LANGUAGE MODEL
The     sky        is      fantastic   .     It        was      [MASK]      !

great = 12%
terrible = 4%

Fine-tuned 

LM



Few-shot IE: pre-train, prompt, entail – Eneko Agirre
76

PET outperforms GPT-3 with 1000x less 
parameters

Ensembling

Iterations

Few-shot learning with prompts
and parameter updates

Exploiting Cloze Questions for Few Shot Text Classification and NLI (Schick and Schutze, 2020)
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Few-shot learning with prompts
and parameter updates

Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning (Liu et al. 2022)

T-Few outperforms 
GPT-3 on held-out 
T0 tasks

80 times less 
parameters

Chart shows 
efficiency at inference
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Conclusions on prompting

● Size of models and update of parameters
– Larger causal LM, no update: best zero-shot, strong few-shot

– Smaller MLM, update: best few-shot (also encoder-decoder) 

● Inference ability is limited: 
– Poor results on entailment datasets (Brown et al. 2021) 

– BIG-BENCH: model performance and calibration both 
improve with scale, but are poor in absolute terms 
(Srivastava et al. 2022)

– No wonder, they are capped by the phenomena needed to 
predict masked words, so no need to learn anything else

78
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Conclusions on prompting

● Size of models and update of parameters
– Larger causal LM, no update: best zero-shot, strong few-shot

– Smaller MLM, update: best few-shot (also encoder-decoder) 

● Inference ability is limited: 
– Poor results on entailment datasets (Brown et al. 2021) 

– BIG-BENCH: model performance and calibration both 
improve with scale, but are poor in absolute terms 
(Srivastava et al. 2022)

– No wonder, LMs are capped by the phenomena needed to 
predict masked words, so no need to learn anything else

79
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Conclusions on prompting

Improving inference ability is an open problem:
● PaLM: chain-of-thought fine-tuning allows to plan 

how to reach to result via intermediate results
● Natural-instructions: definition of the task is 

longer
● Combine LMs and reasoners 
● Our proposal: teach inference ability 

via labeled entailment datasets

80

PaLM: Scaling Language Modeling with Pathways (Chowderhy et al. 2022)
Benchmarking Generalization via In-Context Instructions on 1,600+ Language Tasks (Wang et al. 2022)
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Plan for this session

● Pre-trained LM
● Prompting
● Entailment
● Few-shot Information Extraction

83
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Textual Entailment (RTE), 
Natural Language Inference (NLI)

Dagan et al. 2005 (refined Manning et al. 2006)
● We say that Text entails Hypothesis if, typically, 

a human reading Text would infer that Hypothesis 
is most likely true. 

Text (Premise): I’m not sure what the overnight low was

Hypothesis: I don't know how cold it got last night.

{entailment, contradiction, neutral}

84

Bowman and Zhu, NAACL 2019 tutorial
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Textual Entailment (RTE), 
Natural Language Inference (NLI)

Dagan et al. 2005 (refined Manning et al. 2006)
● We say that Text entails Hypothesis if, typically, 

a human reading Text would infer that Hypothesis 
is most likely true. 

Text (Premise): I’m not sure what the overnight low was

Hypothesis: I don't know how cold it got last night.

{entailment, contradiction, neutral}
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Bowman and Zhu, NAACL 2019 tutorial
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Textual Entailment (RTE), 
Natural Language Inference (NLI)

Dagan et al. 2005 (refined Manning et al. 2006)
● We say that Text entails Hypothesis if, typically, 

a human reading Text would infer that Hypothesis 
is most likely true. 

Text (Premise): I’m not sure what the overnight low was

Hypothesis: I don't know how cold it got last night.

{entailment, contradiction, neutral}
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Bowman and Zhu, NAACL 2019 tutorial
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Textual Entailment (RTE), 
Natural Language Inference (NLI)
NLI datasets widely used to measure quality of models.

To perform well, NL understanding methods need to 
tackle several phenomena:

– Lexical entailment (cat vs. animal, cat vs. dog)

– Quantification (all, most, fewer than eight)

– Lexical ambiguity and scope ambiguity (bank, ...)

– Modality (might, should, ...)

– Common sense background knowledge

– ...

Compositional interpretation without grounding.

87
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Textual Entailment (RTE), 
Natural Language Inference (NLI)
NLI datasets widely used to measure quality of models.

To perform well, NL understanding methods need to 
tackle several phenomena:

– Lexical entailment (cat vs. animal, cat vs. dog)

– Quantification (all, most, fewer than eight)

– Lexical ambiguity and scope ambiguity (bank, ...)

– Modality (might, should, ...)

– Common sense background knowledge

– ...

Compositional interpretation without grounding.

88



Few-shot IE: pre-train, prompt, entail – Eneko Agirre

Textual Entailment (RTE), 
Natural Language Inference (NLI)
Common tasks can be cast as 
entailment premise-hypothesis pairs: 

● Information Extraction: Given a text (premise), 
check whether it entails a relation (hypothesis)

● Question Answering: given a question (premise) 
identify a text that entails an answer (hypothesis) 

● Information Retrieval: Given a query (hypothesis) 
identify texts that entail the query (premise)

● Summarization ...
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Textual Entailment (RTE), 
Natural Language Inference (NLI)
Datasets: 
● RTE 1-7 (Dagan et al. 2006-2012)

Premises (texts) drawn from naturally occurring text. 
Expert-constructed hypotheses. 
5000 examples.

● SNLI, MultiNLI (Bowman et al. 2015; Williams et al. 2017) 
Crowdsourcers provided hypothesis for captions. Then extended to other 
genres. 1 million examples.
– Biases in hypotheses (Gururangan et al., 2018; Poliak et al., 2018)

– Data generation with naı̈ve annotators (Geva et al. 2019), artefacts

● FEVER-NLI (Nie et al. 2019)
Fact verification dataset. 200,000 examples.

● ANLI:  (Nie et al. 2012) 
Adversarially created manually. 168,000 examples.
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(Devlin et al. 2019)

Fine- 
tune 
MLM
on NLI

Entailment = 72%
Contradiction = 12%
Neutral = 16%

[CLS]   Premise      [SEP]   Hypothesis     [SEP]  

Textual Entailment (RTE), 
Natural Language Inference (NLI)

https://arxiv.org/abs/1810.04805
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Textual Entailment (RTE), 
Natural Language Inference (NLI)
GPT-3 using prompts 
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Language Models are Few-Shot Learners (Brown et al. 2020)

Premise

Premise
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Textual Entailment (RTE), 
Natural Language Inference (NLI)
GPT-3 using prompts 
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Language Models are Few-Shot Learners (Brown et al. 2020)

Label
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Textual Entailment (RTE), 
Natural Language Inference (NLI)
GPT-3 using prompts 
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Language Models are Few-Shot Learners (Brown et al. 2020)

Billy died at his home in Tampa, Fla. on Sunday

question: Billy died in Florida. True or False? 

answer: 



Few-shot IE: pre-train, prompt, entail – Eneko Agirre

Textual Entailment (RTE), 
Natural Language Inference (NLI)
GPT-3 using prompts 
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Language Models are Few-Shot Learners (Brown et al. 2020)

Billy died at his home in Tampa, Fla. on Sunday

question: Billy died in Florida. True or False? 

answer: True OpenAI Playground DaVinci
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Textual Entailment (RTE), 
Natural Language Inference (NLI)
GPT-3 using prompts 
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Language Models are Few-Shot Learners (Brown et al. 2020)

Billy died at his home in Tampa, Fla. on Sunday

question: Billy died in Texas. True or False? 

answer: OpenAI Playground DaVinci
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Textual Entailment (RTE), 
Natural Language Inference (NLI)
GPT-3 using prompts 
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Language Models are Few-Shot Learners (Brown et al. 2020)

Billy died at his home in Tampa, Fla. on Sunday

question: Billy died in Texas. True or False? 

answer: False OpenAI Playground DaVinci
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Textual Entailment (RTE), 
Natural Language Inference (NLI)
GPT-3 using prompts 
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Language Models are Few-Shot Learners (Brown et al. 2020)

Billy did not die at his home in Tampa, Fla. on Sunday

question: Billy died in Florida. True or False? 

answer: 
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Textual Entailment (RTE), 
Natural Language Inference (NLI)
GPT-3 using prompts fails 

114

Language Models are Few-Shot Learners (Brown et al. 2020)

Billy did not die at his home in Tampa, Fla. on Sunday

question: Billy died in Florida. True or False? 

answer: True OpenAI Playground DaVinci
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Textual Entailment (RTE), 
Natural Language Inference (NLI)

115

Language Models are Few-Shot Learners (Brown et al. 2020)

GPT-3 using prompts fails

“These results on both RTE and ANLI suggest 
that NLI is still a very difficult task 

for language models”

Also confirmed for PaLM 540B (Chowdhery et al. 2022)
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Textual Entailment (RTE), 
Natural Language Inference (NLI)
GPT-3 using prompts fails

“These results on both RTE and ANLI suggest 
that NLI is still a very difficult task 

for language models”

Also confirmed for PaLM 540B
● Results only improved when fine-tuning on NLI data
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Language Models are Few-Shot Learners (Brown et al. 2020)

PaLM: Scaling Language Modeling with Pathways (Chowderhy et al. 2022)
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Textual Entailment (RTE), 
Natural Language Inference (NLI)
GPT-3 using prompts fails

“These results on both RTE and ANLI suggest 
that NLI is still a very difficult task 

for language models”

Also confirmed for PaLM 540B (Chowdhery et al. 2022)

117

Language Models are Few-Shot Learners (Brown et al. 2020)

Diagnostic NLI dataset:

(Wang et al., 2019) Also used at SuperGlue leaderboard
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Textual Entailment (RTE), 
Natural Language Inference (NLI)
GPT-3 using prompts fails

“These results on both RTE and ANLI suggest 
that NLI is still a very difficult task 

for language models”

Also confirmed for PaLM 540B (Chowdhery et al. 2022)
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Language Models are Few-Shot Learners (Brown et al. 2020)

Diagnostic NLI dataset:
Double Negation: 0.0

Morphological Negation: 0.0

Anaphora/Coreference: 1.7

Nominalization: 2.6

Downward Monotone: 3.6

Conjuction: 4.0

Existential: 6.1

Disjunction: 7.4

Logic: 10.6

Negation: 11.6

Temporal: 12.4
Matthew Correlation Score, from SuperGlue leaderboard

Quantifiers: 59.5

Restrictivity: 48.5

Intersectivity: 41.4

Universal: 39.6

Active/Passive: 34.5

Knowledge: 32.0

World Knowledge: 33.0

Factivity: 31.6

Lexical Semantics: 30.0

Common Sense: 28.4
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Overcoming limitations of LM

LMs fail on many inferences in NLI datasets

Our hypothesis:

Fine-tuning LMs on NLI datasets 
allow LMs to learn certain inferences ...

… which the LMs will apply on target tasks

128

Entailment as Few-Shot Learner (Wang et al. 2021)
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Plan for this session

● Pre-trained LM
● Prompting
● Entailment
● Few-shot Information Extraction
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Few-shot Information Extraction?

Our proposal:
● Use “smaller” masked language models
● Additional pre-training with NLI datasets => Entailment Models
● Recast tasks into text:hypothesis pairs
● Run entailment model (zero-shot)
● Fine-tune entailment model (few-shot, full train)

We will examine our work on:
● Relation extraction (Sainz et al 2021, EMNLP)
● Event-argument extraction (Sainz et al. 2022, NAACL findings)
● Several IE tasks (Sainz et al. 2022, NAACL demo)
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Few-shot Information Extraction?

Our proposal:
● Use “small” pre-trained language models
● Additional pre-training with NLI datasets => Entailment Models
● Recast tasks into text:hypothesis pairs
● Run entailment model (zero-shot)
● Fine-tune entailment model (few-shot, full train)

We will examine our work on:
● Relation extraction (Sainz et al 2021, EMNLP)
● Event-argument extraction (Sainz et al. 2022, NAACL findings)
● Several IE tasks (Sainz et al. 2022, NAACL demo)
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Given 2 entities e1 and e2 and a context c, 
predict the schema relation (if any) 
holding between the two entities in the context.

Billy MaysPERSON, TampaCITY
per:city_of_death

Billy Mays, the bearded, boisterous 
pitchman who, as the undisputed king 
of TV yell and sell, became an unlikely 
pop culture icon, died at his home in 
Tampa, Fla, on Sunday.

136

Entailment for prompt-based 
Relation Extraction (Sainz et al 2021, EMNLP)
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Billy Mays, the bearded, boisterous 
pitchman who, as the undisputed king 
of TV yell and sell, became an unlikely 
pop culture icon, died at his home in 
Tampa, Fla, on Sunday.

Given 2 entities e1 and e2 and a context c, 
predict the schema relation (if any) 
holding between the two entities in the context.

Billy MaysPERSON, TampaCITY

template per:city_of_death

e1 died in e2

Verbalizer

138

Entailment for prompt-based 
Relation Extraction
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Billy Mays, the bearded, boisterous 
pitchman who, as the undisputed king 
of TV yell and sell, became an unlikely 
pop culture icon, died at his home in 
Tampa, Fla, on Sunday.

Given 2 entities e1 and e2 and a context c, 
predict the schema relation (if any) 
holding between the two entities in the context.

Billy MaysPERSON, TampaCITY

Billy Mays died in Tampa.

hypothesis:

text:

e1 died in e2

template per:city_of_death

Verbalizer

139

Entailment for prompt-based 
Relation Extraction



Few-shot IE: pre-train, prompt, entail – Eneko Agirre

Given 2 entities e1 and e2 and a context c, 
predict the schema relation (if any) 
holding between the two entities in the context.

Billy MaysPERSON, TampaCITY

Billy Mays died in Tampa.

hypothesis:

text:

e1 died in e2

template per:city_of_death

Verbalizer

Billy Mays, the bearded, boisterous 
pitchman who, as the undisputed king 
of TV yell and sell, became an unlikely 
pop culture icon, died at his home in 
Tampa, Fla, on Sunday.
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Entailment for prompt-based 
Relation Extraction
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Given 2 entities e1 and e2 and a context c, 
predict the schema relation (if any) 
holding between the two entities in the context.

Billy MaysPERSON, TampaCITY

Billy Mays died in Tampa.

hypothesis:

text:

e1 died in e2

template per:city_of_death

Verbalizer

Billy Mays, the bearded, boisterous 
pitchman who, as the undisputed king 
of TV yell and sell, became an unlikely 
pop culture icon, died at his home in 
Tampa, Fla, on Sunday.

Entailment for prompt-based 
Relation Extraction

141

Run fine-tuned 
entailment model

E N CE N C
E N C
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Given 2 entities e1 and e2 and a context c, 
predict the schema relation (if any) 
holding between the two entities in the context.

Billy MaysPERSON, TampaCITY

Billy Mays died in Tampa. per:city_of_death

hypothesis:

text:

e1 died in e2

template per:city_of_death

Verbalizer

Billy Mays, the bearded, boisterous 
pitchman who, as the undisputed king 
of TV yell and sell, became an unlikely 
pop culture icon, died at his home in 
Tampa, Fla, on Sunday.

Entailment for prompt-based 
Relation Extraction
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Entailment for prompt-based 
Relation Extraction
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Billy Mays was born in Tampa.

Billy Mays’s birthday is on Tampa.

Billy Mays is Tampa years old.

Billy Mays died in Tampa.

...

Billy MaysPERSON, TampaCITY

Verbalizer

Hypothesis:

Entailment for prompt-based 
Relation Extraction
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● Function that combines entity pairs with 
templates to generate textual hypotheses for 
relations:

● N:M relation between templates and relations 
● Also, type constraints for entities

Billy Mays was born in Tampa.

Billy Mays’s birthday is on Tampa.

Billy Mays is Tampa years old.

Billy Mays died in Tampa.

...

Billy MaysPERSON, TampaCITY

Verbalizer

Hypothesis:

Entailment for prompt-based 
Relation Extraction
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E N CE N C

Billy Mays’s birthday is on 
Tampa.Billy Mays is Tampa years old.

Billy Mays died in Tampa.

E N C

NLI Model
Next, we compute the 
entailment probabilities 
for each of the hypothesis 
independently.

Billy Mays, the bearded, boisterous 
pitchman who, as the undisputed king 
of TV yell and sell, became an unlikely 
pop culture icon, died at his home in 
Tampa, Fla, on Sunday.

Entailment for prompt-based 
Relation Extraction
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   Pr (x, Billy Mays, Tampa) = δr(PERSON, CITY) max(     )

 ∈ Tr

Relation probability inference

● We compute the probability of relation r based on the hypothesis 
probabilities and entity constraints:

● The δr function describes the entity constraints of the relation r:

Entailment for prompt-based 
Relation Extraction
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E NE N
Billy Mays was 
born in Tampa.

Billy Mays’s 
birthday is on 

Tampa.

Billy Mays is 
Tampa years old.

Billy Mays died in 
Tampa.

...

Billy MaysPERSON, TampaCITY

Verbalizer

Billy Mays died in 
Tampa.

E N C

NLI Model

Pr (x, Billy Mays, Tampa) = δr(PERSON, CITY) max(     )

 ∈ Tr

Relation probability inference

Hypothesis:

Finally, we return the relation with the highest probability:

If no relation is entailed, then r = no_relation

Billy Mays, the bearded, boisterous 
pitchman who, as the undisputed king of TV 
yell and sell, became an unlikely pop culture 
icon, died at his home in Tampa, Fla, on 
Sunday.

Entailment for prompt-based 
Relation Extraction
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E NE N
Billy Mays was 
born in Tampa.

Billy Mays’s 
birthday is on 

Tampa.

Billy Mays is 
Tampa years old.

Billy Mays died in 
Tampa.

...

Billy MaysPERSON, TampaCITY

Verbalizer

Billy Mays died in 
Tampa.

E N C

NLI Model

Pr (x, Billy Mays, Tampa) = δr(PERSON, CITY) max(     )

 ∈ Tr

Relation probability inference

Hypothesis:

Finally, we return the relation with the highest probability:

If no relation is entailed, then r = no_relation

Billy Mays, the bearded, boisterous 
pitchman who, as the undisputed king of TV 
yell and sell, became an unlikely pop culture 
icon, died at his home in Tampa, Fla, on 
Sunday.
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Entailment for prompt-based 
Relation Extraction
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Billy MaysPERSON, TampaCITY

per:city_of_death
Context. [SEP] Billy Mays died in Tampa.

Context. [SEP] Billy Mays was born in Tampa.

BaldwinPERSON, executiveTITLE

no_relation

Context. [SEP] Baldwin is a executive.

Context

Context

Examples with relation:

Examples with no relation:

Fine-tuning with prompted 
Relation Extraction dataset
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Billy MaysPERSON, TampaCITY

per:city_of_death
Context. [SEP] Billy Mays died in Tampa.

Context. [SEP] Billy Mays was born in Tampa.

BaldwinPERSON, executiveTITLE

no_relation

Context. [SEP] Baldwin is a executive.

Context

Context

Examples with relation:

Examples with no relation:
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Fine-tune MLM with 
prompted examples

Fine-tuning with prompted 
Relation Extraction dataset
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Billy MaysPERSON, TampaCITY

per:city_of_death
Context. [SEP] Billy Mays died in Tampa.

Context. [SEP] Billy Mays was born in Tampa.

BaldwinPERSON, executiveTITLE

no_relation

Context. [SEP] Baldwin is a executive.

Context

Context

Examples with relation:

Examples with no relation:
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Relation Extraction dataset
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Evaluation dataset

TACRED (Zhang et al., 2017), based on TAC 

41 relation labels (positive), no relation (negative).

Training:
● Zero-shot: 0 examples
● Few-shot: 

– 5 examples per class (1%)
– 23 examples per class (5%)
– 46 examples per class (10%)

● Full-train: 460 examples per class

153



Few-shot IE: pre-train, prompt, entail – Eneko Agirre

Evaluation: zero-shot
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Evaluation: zero-shot

156

Zero-Shot relation extraction:
● Best results with DeBERTa
● Note that minor variations in MNLI (±2) 

produce large variations in F1.
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Evaluation: few-shot

158

Few-Shot relation extraction:
● State of the art systems have difficulties to learn the task where 

very small amount of data is annotated.
● Our systems large improvements over SOTA systems. 1% > 10% 
● DeBERTa model score the best.
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Given the success on Relation 
Extraction, we extended the work:
● Check Event Argument Extraction
● Transfer knowledge across event schemas 

(ACE, Wikievents)
● Measure effect of different NLI datasets
● Measure domain-expert hours

160

Entailment for prompt-based 
Event Argument Extraction (Sainz et al.  2022, NAACL)
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Entailment for prompt-based 
Event Argument Extraction 

Given event e and argument candidate a and a context c, 
predict the argument relation (if any) 
holding between the event and candidate in the context.

hiredSTART-POSITION, John D. IdolPERSON
Start-Position:Person

In 1997, the company hired 
John D. Idol to take over as 
chief executive.
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holding between the event and candidate in the context.
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In 1997, the company hired 
John D. Idol to take over as 
chief executive.

a was hired

template start-position:person

Verbalizer

text:
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a was hired

template start-position:person

Verbalizer

text:
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Entailment for prompt-based 
Event Argument Extraction 

Given event e and argument candidate a and a context c, 
predict the argument relation (if any) 
holding between the event and candidate in the context.

hiredSTART-POSITION, John D. IdolPERSON

In 1997, the company hired 
John D. Idol to take over as 
chief executive.

John D. Idol was hired.

hypothesis:

a was hired

template start-position:person

Verbalizer

text:

Run fine-tuned 
entailment model
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Entailment for prompt-based 
Event Argument Extraction 

Given event e and argument candidate a and a context c, 
predict the argument relation (if any) 
holding between the event and candidate in the context.

hiredSTART-POSITION, John D. IdolPERSON

In 1997, the company hired 
John D. Idol to take over as 
chief executive.

John D. Idol was hired.

hypothesis:

a was hired

template start-position:person

Verbalizer

text:

start-position:person
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Entailment for prompt-based 
Event Argument Extraction 

Given event e and argument candidate a and a context c, 
predict the argument relation (if any) 
holding between the event and candidate in the context.

hiredSTART-POSITION, John D. IdolPERSON

John D. Idol bought 
something.

John D. Idol was hired.

John D. Idol hired someone.

John D. Idol was used as a 
vehicle.

Vehicle

Entity

Person

Buyer

John D. Idol was the 
defendant.

Defendant
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Evaluation datasets

ACE (Walker et al., 2006). 22 argument types.

WikiEvents (Li et al., 2021). 59 argument types.

Training ( ACE / Wikievents):
● Zero-shot: 0 examples
● Few-shot: 11 / 4 examples per class (5%)
● Full-train: 220 / 80 examples per class (100%)
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● EM is a fine-tuned RoBERTa (baseline)

Evaluation: ACE and Wikievents
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● NLI is our entailment-based system (RoBERTa)

Evaluation: ACE and Wikievents
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● NLI+: pre-train on other schema 
(Wikievents or ACE respectively)

Can we transfer between schemas 
(ACE <=> WikiEvents)

178
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● We beat SOTA, thanks to entailment, schema transfer 

Evaluation: ACE and Wikievents
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● We beat SOTA, thanks to entailment, schema transfer
● Reach full-train with only 5% of the annotations

Evaluation: ACE and Wikievents
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The more NLI pre-training the better 
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● We gave the task to a computational linguist PhD
● Very similar results across all training regimes
● Replicable, robust to variations in prompts

● She found prompt writing friendly:

“Writing templates is more natural and rewarding than 
annotating examples, which is more repetitive, stressful and 
tiresome.”

“When writing templates, I was thinking in an abstract 
manner, trying to find generalizations. When doing annotation 
I was paying attention to concrete cases.”

Is all dependent 
on the domain-expert?
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● Time devoted by domain-expert in template writing:
● Max. 15 minutes per argument 
● ACE: 5 hours for 22 argument types
● WikiEvents: 12 hours for 59 argument types

● Estimate of time by domain-expert for annotation
(under-estimation, no quality control, speed):
● ACE: 180 hours for whole dataset (16,500 examples)

What is the manual cost 
compared to annotation

188
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Two frameworks, 9 hours of domain-expert effort (ACE):
1) Define, annotate, train: annotate 850 ex. (5%)
2) Verbalize while defining: prompts (5h), annotate 350 ex. (4h)

What is the manual cost 
compared to annotation

189



Few-shot IE: pre-train, prompt, entail – Eneko Agirre

Two frameworks, 9 hours of domain-expert effort (ACE):
1) Define, annotate, train: annotate 850 ex. (5%)
2) Verbalize while defining: prompts (5h), annotate 350 ex. (4h)

What is the manual cost 
compared to annotation

190



Few-shot IE: pre-train, prompt, entail – Eneko Agirre

Two frameworks, 23 hours of domain-expert effort (ACE):
1) Define, annotate, train: annotate 13%
2) Verbalize while defining: prompts (5h), ann. 10% (18h)

What is the manual cost 
compared to annotation
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Two frameworks, 23 hours of domain-expert effort (ACE):
1) Define, annotate, train: annotate 13%
2) Verbalize while defining: prompts (5h), ann. 10% (18h)

What is the manual cost 
compared to annotation
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With 23 hours, 
our entailment model 
matches a fine-tuned 
model (180 hours),
using same amount of 
parameters
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Conclusions for prompt-based 
extraction using NLI

● Very effective for zero- and few-shot IE
● Allows for transfer across schemas 

(for the first time)
● 8 times less hours from domain-expert
● It is now feasible to build an IE system 

from scratch with limited effort 
– Develop schema and verbalization at the same time.

– Verbalize then annotate a few examples

197
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Verbalize while defining, interactive 
workflow (Sainz et al. 2022, NAACL demo)

1) Domain expert defines entities and 
relations in English

2) Runs the definitions on examples

3) Annotates a handful of incorrect examples, 
iterates

● User interface for NERC, RE, EE, EAE 
●  2 minute video

204

https://vimeo.com/676138340
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Verbalize while defining, interactive 
workflow (Sainz et al. 2022, NAACL demo)
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Verbalize while defining, interactive 
workflow (Sainz et al. 2022, NAACL demo)
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Plan for this session

● Pre-trained LM
● Prompting
● Entailment
● Few-shot Information Extraction
● Conclusions

218
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Conclusions

● Pre-train, prompt and entail works
– Using “smaller” MLMs

● Few-shot Information Extraction is here
● Verbalize while defining, interactive workflow

– Domain expert defines entities and relations in English

– Runs the definitions on examples

– Annotates a handful of incorrect examples, iterates

● Lower cost for building IE applications
● Friendlier to domain-experts
● Slides in my website, code at:

https://github.com/osainz59/Ask2Transformers 
219
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Future work

● Verbalize while defining, interactive workflow
– Check real use-cases

● Pre-train, prompt and entail works
– Check tasks beyond IE

– Compare head-to-head to plain LM (PET) and QA

– Understand the role of contradictions

– Identify useful inferences

– Entailment as a method to teach inference to LM

● DL – reasoning research

222
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Few-shot Information Extraction
Pre-train, Prompt, Entail

Eneko Agirre
Director of HiTZ

Basque Center for Language Technology 
(UPV/EHU)
@eagirre

http://hitz.eus/eneko/

THANKS!

https://github.com/osainz59/Ask2Transformers
Relation extraction (Sainz et al 2021, EMNLP)
Event-argument extraction (Sainz et al. 2022, NAACL findings)
Several IE tasks (Sainz et al. 2022, NAACL demo)

http://hitz.eus/eneko/
https://github.com/osainz59/Ask2Transformers
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